Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems
摘要
大型语言模型(LLMs)的出现,推动了人工智能领域的变革性进步,为能够进行复杂推理、强大感知和多领域灵活行动的高级智能体铺平了道路。随着这些智能体在AI研究和实际应用中扮演越来越重要的角色,其设计、评估和持续改进也带来了复杂且多层面的挑战。本综述全面梳理了相关进展,将智能体置于一种模块化、类脑架构之中,融合了认知科学、神经科学和计算研究的原理。我们将探讨分为四个相互关联的部分。首先,深入分析智能体的模块化基础,系统地将其认知、感知和操作模块映射到人脑的类似功能,并阐释记忆、世界建模、奖励处理和类情感系统等核心组成部分。其次,讨论自我增强与适应性进化机制,探索智能体如何自主提升能力、适应动态环境,并通过自动化优化范式(包括新兴的AutoML和LLM驱动的优化策略)实现持续学习。第三,考察协作与进化的多智能体系统,研究智能体间互动、协作和社会结构中涌现的集体智能,突出其与人类社会动态的相似之处。最后,聚焦于构建安全、可靠且有益的AI系统,强调内在与外在的安全威胁、伦理对齐、鲁棒性以及实现可信实际部署所需的实际缓解策略。
播客
播放速度: